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We present a new numerical algorithm that aligns a quadrilateral grid with internal
alignment curves (IACs). These IACs can be used to delineate internal interfaces,
discontinuities in material properties, internal boundaries, or major features of a flow
field. The adaptive IAC grid generation algorithm readjusts a predefined reference
grid to create a nearby grid where the mesh cell edges are aligned with the IACs.
On an aligned grid, numerical discretizations of partial differential equations can
be formulated to satisfy the interfacial relations, such as matching fluxes across
the discontinuity, to reduce the numerical errors introduced by the discontinuity.
We present examples to demonstrate the effectiveness of the IAC grid generation
algorithm for multiple embedded interfaces in a quadrilateral griskooo Academic Press

1. INTRODUCTION

In numerical approximations of physical systems with discontinuous coefficients, off
the largest numerical errors are introduced in a neighborhood of the discontinuities. Tt
errors are often greatly reduced if the grid is aligned with the discontinuities and spe
formulas are used to incorporate the jump conditions directly into the numerical moc
for example, in solving the equations governing the conservation of mass, momentum,
energy in multimaterial or multiphase flows, such as a liquid—gas or liquid—solid interfa
where the normal and tangential stresses must be matched at the interface or the equatit
state are drastically different at an interface. When the strain and stress of materials are
modeled and the coefficients are discontinuous, the numerical solution is often extren
sensitive to the proper alignment of the control volume with the boundary. In numeri
approximations of wave equations, discontinuities (e.g., the tensorial dielectric const:
in Maxwell’'s equations or the tensorial stiffness tensors in general plasticity models) ¢
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introduce spurious errros and reflections at an interface boundary unless the bounda
aligned with the discontinuity [11].

The rate and direction of underground flows predicting the extent of contamination &
the danger to the environment posed by subsurface flows from hazardous waste site
governed by discontinuities in the geomorphology of the flow field. Finite difference a
proximations are more accurate when the underlying grid is aligned with the discontinuit
to minimize the heterogeneity within a grid cell.

Although grid generation [15, 21] is the heart of most numerical algorithms for heter
geneous regions, little attention has been given to automated alignment with the inte
boundaries. With the exception of a few recent papers [5, 8], most of the proposed mett
have been devised to locally align a grid with interfaces and sharp gradients in the solu
[1,6,7,12-14,17, 19, 22, 24] or to explicitly treat discontinuities as an immersed interfe
in a grid and locally adjust the difference methods to accurately account for any disconti
ities [9, 23]. The General Elastic Grid Adjustment (GEGA) [6], directional control [1, 7]
and Jacobian-weighted [13, 14] methods can generate smooth but only qualitatively alig
grids. The Geostatistical Adaptive Grid (GAG) [19] alignment algorithm can generate
aligned grid, but it can be extremely rough and irregular. Because the accuracy of fir
difference approximations is related to the smoothness of the grid, it is essential to gene
an aligned grid which is smooth.

We describe a new approach where after the discontinuities with internal alignment cur
(IACs) are delineated and a boundary fitted quadrilateral reference grid is generated,
reference grid is rearranged so the grid cell edges are locally aligned with the IACs. T
IACs can be defined to delineate internal interfaces, discontinuities in material propert
internal boundaries, or major features of a flow field. The new grid then captures th
discontinuities and will allow numerical discretizations of PDEs to directly incorporat
the interfacial relations, such as matching fluxes across the discontinuity, at the grid
edges and reduce the numerical errors introduced by the discontinuity. The IAC algorit
is motivated by the observation that in many applications with internal discontinuities, t
computation domain can be split into several homogeneous smaller domains by the IA

Multiblock grid generation methods split the physical domain into separate pieces, get
ate a separate grid for each piece, and have the separate grids communicate with each
through the interfacial boundary conditions. The multiblock grid generation algorithms f
block structured meshes can create meshes whose boundaries align with discontint
similar to the examples we show for the IAC applied to a single mesh [3, 4]. A majl
difference, however, is that the IAC algorithm aligns the internal grid linesrafle log-
ically rectangular grid with discontinuity. Thus, the flexibility and complexity of multiple
blocks are traded for the convenience of a single block. There are advantages to havi
single quadrilateral grid that embeds the discontinuities as generated by the IAC versu:s
flexibility (but added complexity) of having several component grids, each with its ow
data structure. For complex problems, probably the ideal grid would be a combinatior
the two approaches.

A significant difference between the IAC and block-structured alignment algorithms
that the IAC grid is aligned witlinternal interfaces so that material property discontinu-
ities in the medium are captured by the grid. Most multiblock algorithms aligexhesr-
nal boundaries of the mesh blocks with the interfaces. Because of these differences,
general-purpose multiblock algorithms are appropriate for flow problems where the gric
aligned with external physical boundaries such as multiple airfoils. Also, often viscous-fle
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calculations have stringent grid quality requirements in boundary-layer regions near exte
boundaries that are easily accounted for by multiblock methods.

The IAC algorithms are designed for multiphase, subsurface flow in porous media c
taining material discontinuities in the conductivity field or for applications of Maxwell
eqguations with discontinuities in the dielectric properties of the medium. In these proble
there are usually no boundary layers near the internal interfaces. The IAC algorithm will
automatically refine the mesh near an IAC; however, by aligning the grid with discontin
ities, the numerical method is more likely than a nonaligned grid to capture the behavio
the flow field. When a refined grid is desired near an IAC, this can usually be accomplisl
by an appropriate initialization of the iterative IAC algorithm.

After describing the IAC algorithm for the simplest case of aligning the grid with IAC
that span between opposite sides of the domain boundaries, we describe the more dif
IAC algorithm needed to align the grid with the embedded quadrilaterals. We then comb
the two algorithms to illustrate the robustness of the approach over awide range of exam
with internal discontinuities. We also include an electromagnetic calculation, where the |,
algorithm is used to align the grid with a discontinuity in the dielectric constant.

2. GRID ALIGNMENT FOR SPANNED IACs

Indescribing the algorithm, itis useful to classify the type of IACs according to whether
not the IAC describes a region enclosed within the domain. In this section, we will descr
the algorithm for when the discontinuities can be delineateddpaaned IAGSIAC) that
connects opposite sides of the domain boundaries. These IACs are appropriate in lay
domains when flows in underground flow fields are approximated or the dynamics of laye
materials or the interface dynamics between two fluids are modeled. Note that althou
discontinuity may not stretch across the entire domain, it can be delineated by a spat
IAC by extending the IAC from the discontinuity to the boundaries. In our algorithm, w
approximate a SIAC by a sequence of (possibly curved) line segments.

In the example shown in Fig. 1a, there are two horizontal SIAg€sgndH;) and one
vertical SIAC (/p). These consist of a sequence of linked line segments {¢.das line
segments connecting the poimdgy, Hii, Hio, andH;3). Note that the line segments need
not be a straight line; the segment betwéknandHs. is the arc of a circle. We assume that
horizontal (vertical) SIACs do not cross other horizontal (vertical) SIACs. If a line segme
is shared by both a horizontal SIAC and a vertical SIAC, it can easily be transformed
a case where it is not by adding more line segments. Therefore, for simplicity, we reqt
that none of the line segments be shared by both horizontal and vertical SIACs.

Inadditionto the IACs, the algorithm requires an initial (not necessarily aligned) bound:
fitted grid as in Fig. 1b. The initial grid can be generated by any standard grid generat
algorithm based on, say, transfinite interpolation [21], an elliptic grid generator [15], or t
divide and conquer [2] algorithm.

The alignment process begins with the simple assignment of a single horizontal grid |
to each of the horizontal SIACs and a vertical grid line to each of the vertical SIACs.
select the appropriate grid line to align with the SIAC, we will describe the process fo
horizontal SIAC. First, for each vertex of the SIAC, find the point of the non-aligned gri
that is closest to the vertex. Next take the average of the vertical indices of all of the clos
non-aligned points and round to define the vertical index of the horizontal grid line clos
to the SIAC. After this is done for each vertical and horizontal SIAC, the intersection poir
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FIG. 1. (a) The goal is to align a grid with the two horizontal and one vertical SIACs in this square domai
(b) The initial reference grid for the domain in (a) is a uniform>4#1 point grid. (c) Moving the reference grid
points closest to the SIACs to lie on the SIAC generates a possibly overlapping grid. (d) After the locations of
grid points are smoothed redistributed, and the points along the SIACs and the domain boundary the alignec
accurately tracks the IACs.

between two SIACs have unique grid indices (logical coordinates) in each direction. T
locations of the grid points between any two SIAC vertices are then uniformly distributi
(default) or distributed by the virtual function defined by the user. The original distributic
of the grid points can be preserved by computing the intersections between the SIAC
grid lines and then redistributing them with inverse interpolation [10]. On a curvilinear gr
the redistribution is done in physical space instead of based on the grid index (logical spa
If a SIAC crosses both a sparse region (with the grid points far apart) and a dense re
(with the grid points close together), an alternative way to preserve the distribution of 1
grid points is to split the SIAC into two segments, one in sparse region, one in dense reg

The assignment of the reference grid line to the SIAC may resultin grid points crossing
the domain boundaries and these points must be regularized to retain their relative positi
Linear interpolation is usually sufficiently accurately define new grid locations along smoc
boundaries but it can introduce large errors near kink points or internal corners. A kink
a specified point on an IAC or boundary where the slope of the curve is discontinuc
(e.g., pointHy; in Fig. 1a). We handle the kinks in the boundary by not restricting the gri
point movement during the redistribution and then moving the boundary point nearest 1
kink point to the kink’s location. This approach is also used in the divide and conquer g
generation method [2].

We regularized the boundary grid points by first using the original distribution of th
original grid points on the boundary as a guide for the density of mesh points along
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boundary line. We use inverse interpolation between the intersection points of the S/
with the boundaries to redefine the grid points on the boundary so that they match
relative distribution of the original reference grid. The inverse interpolation is done in gr
index space by assuming the grid spacing between the original grid points is uniform.
distribution and locations of the new grid points are defined by calculating the length
each boundary segment and dividing it by the new number of intervals.

2.1. Grid Smoothing Algorithm

Redefining the grid points on the SIACs and domain boundaries can result in se\
distortions or tangling of the internal grid points (e.g., see Fig. 1c). We regularize t
positions of the internal points by first freezing the mesh points on all SIAC and dom:
boundaries and then smoothing the positions of the remaining points by an iterative ellj
smoothing grid generation method. In the examples presented here, we use Gauss—¢
iterations to solve the Thompson, Thames, and Mastin (TTM) smoothing equations [
The smoothing regularizes the distribution of the grid points, is guaranteed to convel
and eliminates overlapping grid cells (see Fig. 1d). The Gauss—Seidel iterations are h:
when the residual of the TTM equations falls below a small tolerance.

Once a smooth grid has been generated by freezing some of the grid points, the pt
on the domain boundaries are freed up and the smoothing grid generator is called a
We use the inverse interpolation algorithm to set the relative spacing of the points on
boundary to be the same as the relative spacing of the grid points along the first inte
line of grid points. We found this two-step process to be more robust than allowing the I/
points to move on the domain boundary in the initial smoothing step. This is especially t
when the grid must be aligned with multiple IACs. For most problems, the boundary poi
need to be smoothed only a few times.

3. GRID ALIGNMENT FOR QUADRILATERAL IACs

We first consider the case when the internal discontinuities can be delineated by
boundary of a collection ajuadrilateral IACS(QIACS). In our implementation, the grid is
aligned sequentially with the perimeters of the QIACs and we assume that the alignn
with one quadrilateral has a small affect on the alignment with the others. Although 1
QIACs can be adjacent to each other or nested within one another, they should not ove

To align a grid with internal quadrilaterals, it is possible to transform the problem in
alignment with SIACs by extending the edges of the quadrilaterals as horizontal and vert
line segments to the domain boundaries. This approach succeeds for one or two quad
erals, but will usually produce a grid that is not as well structured as one produced by
algorithm designed specifically for quadrilaterals. This is especially true when there
large numbers of quadrilaterals or the boundaries of the quadrilaterals and the relat
between them, such as several quadrilaterals nested within each other, are extremely
plicated. For these situations, it is extremely difficult to automate a procedure that v
embed the QIACs into a SIAC problem.

3.1. Single QIAC

Consider the initial reference grid and the embedded quadrilateral shown in Fig. 2a.
will use this example to illustrate the basic single QIAC algorithm.
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FIG. 2. (a) The initial QIAC is embedded in a uniform X111 initial grid. (b) The domain is split into nine
subdomains by extending the vertices to the domain boundaries. (c) The reference grid points are defined fc
line segments on the QIAC, the lines connecting the vertices to the domain boundaries and along the do
boundaries. (d) The initial grid points nearest the IACs are moved to the newly defined reference grid poi
(e) The grid is regularized by the two-step smoothing algorithm described in Section 2.1.

BAsIC SINGLE QIAC ALGORITHM.

1. Identify the closest reference grid point for each vertex and assign logical (inde
coordinates for the vertices and the center of QIAC:

o |dentify the grid point closest to each vertex of the quadrilateral and assign its logi
coordinates to the vertex. In Fig. 2a if the grid lines are numbered from 0 to 10, then
grid index closest to the verté¥ at (0.2, 0.6) is (2, 6)V; is at (5, 2),V, is at (8, 4), and
V3 is at (5, 8). Here we have ordered the four vertices in counterclockwise in the logi
(index) coordinate system.

e To determine a starting vertex of QIAC for the algorithm in a consistent manner, v
use an algorithm that identifies it as tosver leftcorner of the logical reference grid. The
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lower left vertex satisfies two conditions: (1) the horizontal logical coordinate of of low
left corner must be smaller than the next vertex; (2) the average of the absolute values o
logical slopes of the candidate edge starting at the lower left corner and the correspon
opposite side of the QIAC must be less than that of the other two edges of the QIAC.

For this exampleYy andV; satisfy the first condition. Starting &%, the sum of absolute
value of the logical slopes betwe®ph — V; andV, — V3, is

6-2/5-2+8—-4/(8-5) =8/3.
Starting atV;, the sum betwee¥w; — V, andVy — V3 is
4-2/8-5+@8-6)/(5—2) =4/3.

Therefore, (because/@ < 8/3) we use the second condition to sel¥gtto be the lower
left corner in the logical coordinate space.
o Define reference points in the logical coordinate system.
—Define thelogical center of the quadrilaterads the average (truncated to an
integer) of the logical coordinates of the four vertices. For this example, the logical cer
is at

Ve=M+Vo+V3+Vo)/4=(505).

—Define averagéogical lengthin the x andy directions of the logical coordinate
system as

ly=(Vo—Vi+Vs—Vo)lx/2+1=(8-5+5-2)/2+1=4,
ly=(Va—VatVo—Vp)|y/2+1=(6-2+8—4)/2+1=5

—Define thdogical coordinategor the four vertices based on the logical coordinate:
of the center and average length in each direction. The logical coordinates for the lower
cornerVy is

Vl = (Vc - (Ix» |y)/2) = (3, 3)-

The logical coordinates for other three vertices\re= (7, 3), Va3 = (7,7), Vo = (3, 7).

2. Split the domain into nine parts by connecting the four vertices with the dome
boundaries by moving the closest reference point to each vertex as shown in Fig. 2b.
this example, the closest reference point of each vertex and vertex itself are at the s
location. For a general grid, this may not be true and some parts may degenerate ir
single grid line if one side of the QIAC is on the domain boundary.

3. Using inverse interpolation, compute the grid locations for the line segments on
guadrilateral, along the lines connecting these segments to the domain boundaries ar
the domain boundaries as shown in Fig. 2c.

o First define the grid points on the lines connecting the vertices with the domz
boundaries. Note that to preserve the order of the grid points on a boundary, the locatior
the boundary points and the points nearest to the boundaries are not changed by the in
interpolation.
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e Using the inverse interpolation, define the grid positions on the domain boundar
o Define the grid points between the vertices on the QIAC.

4. If the domain boundary has a kink point, move the reference grid point closest to
kink point, as we did for aligning the grid with an SIAC. (Note, that there are no kink poin
in the example shown in Fig. 2a). Because we modify the grid point locations only on t
four lines, where the edges of quadrilateral lie, and the domain boundaries, the grid
generate after this step is very irregular (see Fig. 2d).

5. Using the same smoothing operator as for the SIAC, generate the aligned grid w
freezing the grid points on the QIAC and domain boundary. Then the points on the dom
boundaries are freed up and the smoothing grid generator is called again (see Fig. 2e)

To ensure that initially the different vertices have different logical coordinates, the re
erence grid should be sufficiently fine so the local minimum spacing for the reference ¢
should be larger than the distance between any two vertices of the QIACs. Otherwise,
vertices may have the same nearest reference point, which could lead to the singulari
the quadrilateral. When this happens for a thin layer where two vertices are close, it cal
avoided by using a finer initial reference grid near the thin layer. To prevent multiple QIA
vertices being assigned to the same reference grid point, we define the reference ver
sequentially. That is, we bind the vertex that is closest to a reference point to that point.
eliminate it for consideration as a reference point for any other vertices. This approacl
robust and can create a locally fine grid near an IAC.

3.2. Multiple QIACs

When there are several quadrilaterals inside the domain, we recursively align the ¢
with the quadrilaterals one at a time using the single QIAC algorithm. Before beginning t
alignment process, we analyze the QIACs to identify potential problems, such as overlapj
QIACs or QIACs with shared boundaries. We eliminate these problems by defining n
QIACs to be used during the alignment algorithm.

When a QIAC shares a boundary with its parent QIAC, we say the child-shared bound
is contained in the boundary of the parent QIAC. When two QIACs are not nested but sh
only part of a boundary, it is convenient to generate a new QIAC and to define three QIA
where the shared boundary is now contained in the boundary of another quadrilateral.
example is shown in Fig. 3a. If two QIACs intersect at a vertex, then we add anott
guadrilateral which shares a boundary with both quadrilaterals (see Fig. 3b). At this tir
our algorithm does not support more than three quadrilaterals intersecting at a single p

FIG. 3. (a) Two QIACs that initially share part of the boundary are transformed into three QIACs where t
shared boundary is now contained in the boundary of another quadrilateral. (b) Two QIACs that share a verte
transformed into three QIACs where the shared boundary is now contained in the boundary of another quadrila
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FIG. 4. The multiple QIACs in the figure on the right are cataloged by the tree diagram on the left and t
grid the QIACs are considered in the order A-B-C-D-E-F-G.

We order the alignment process by defining a tree structure (as shown in Fig. 4) to cat:
the nesting of the QIACs with respect to each other. A QIAC with other QIACs inside
defined as the parent and the included QIACs are its children and are linked below the pe
in the alignment tree. Two QIACs are siblings if they have the same immediate parent
do not contain each other. We define the entire domain as the first parent at the top o
alignment tree. The recursive alignment algorithm begins at the top of the tree and wc
it way down. After the grid has been aligned with a QIAC, then the alignment algorith
recursively aligns the grid for its children. After the grid has been aligned with all tr
children of a QIAC, then it is aligned with the siblings of the QIAC.

The order in which the grid is aligned with the QIACs on the same level does affect t
final aligned grid. In practice the resulting grid is insensitive to the order that the grid
aligned with the siblings on the same level. We do find that the algorithm is usually mc
effective and requires fewer smoothing iterations if the grid is aligned with the sibling tr
has the most boundaries in common with other QIACs first.

Once the alignment tree has been defined and theseda¢tedQIAC to be aligned has
been chosen, the first step is to find thgest isolated subdomaiof a previously aligned
region that contains the selected QIAC (see Fig. 5). The boundary of the subdomain c
be the boundary of the whole domain, the boundary of the previous aligned quadrilater
or previously aligned horizontal or vertical SIACs.

To minimize the effect of defining the grid in the subdomain, the subdomain is defin
to be as large as possible, but not to contain any previously aligned QIACs. To identify
largest isolated subdomain, we start with the whole domain and shrink it step by step.

SINGLE QIAC ALIGNMENT ALGORITHM.

1. First we check if the quadrilateral is inside another previously aligned quadrilater
If so, then because we are refining from top to bottom of the parent—child alignment tree
a quadrilateral is nested inside another one, the larger one will have already been alig
If this is the case, then we shrink the subdomain to the boundaries of the parent alig
quadrilateral.

2. Next if the current quadrilateral is not the child of a previously aligned QIAC, the
we check if it is between any SIACs. If so, then we shrink the subdomain by using the
IACs to define the new boundaries of the subdomain.

3. Finally, we check if there are previously aligned QIACs inside the current subdoma
If so, then the subdomain is shrunk again until there are no other aligned QIACs in
subdomain. The rectangular subdomain is shrunk until it is the largest isolated rectang
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FIG.5. Ifthe grid has already been aligned with the QIALS, C, andD, then to identify the largest isolated
subdomain for the QIAE that is as large as possible but does not contain other previously aligned QIACs. Fir
since QIACA is a parent oD, we take it as the initial subdomain f& in (a). Because this still contains the
previously aligned QIA@, this subdomain is shrunk to the one shown in (b). The subdomain is further reduc
in (c) and (d) to exclude the previously aligned QIAC&ndD.

region containing the selected QIAC that does not intersect or contain a previously alig
QIAC. This can be done by sweeping each boundary of the subdomain to exclude the pr
ously aligned QIACs (see Fig. 5). Note that the boundary of the largest isolated subdon
usually overlaps with the boundaries of previously aligned QIACs.

It may seem that the ideal subdomain for the selected QIAC would be one whose bot
aries contain the boundaries of the selected QIAC. However, because the subdomain bc
ary does not change during our alignment and smoothing, unless the selected QIAC i
the external boundary of the domain or on a previously aligned IAC, this is usually a pc
choice for the alignment.

The grid is aligned for the selected QIAC by applying the single QIAC alignment algt
rithm within the selected subdomain. Although for the single QIAC alignment algorithi
the distribution of points on the boundary of the whole domain is unrestricted, the bound
of the selected subdomain may contain other previously aligned QIACs. If so, the logical
dicesforthe vertices of previously aligned QIACs should not be changed, although the po
can move along the subdomain boundary during the subdomain alignment. We allow
movement by identifying the vertices of the previous aligned IACs on the subdomain bou
ary and redistribute the points based on this information of these IACs and the selected QI

When the boundary of the selected subdomain is a SIAC, then we have more freedo!
defining the number of grid points along the IAC. If the boundary of the subdomain contai
vertices of an SIAC, these points are treated as kink points.
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Finally, when the vertex for the selected QIAC is also a vertex of a previously align
QIAC, then the logical indices for this vertex have been assigned and cannot be chang

MULTIPLE QIAC ALIGNMENT ALGORITHM.

1. Preprocess the QIACs to eliminate overlapping QIACs and shared boundaries.

2. Define the parent—child alignment tree to catalog how the QIACs are nested wit
each other.

3. Define an order for the alignment process by sweeping the alignment tree from
to bottom. The grids on the same level (siblings) are ordered so the ones with the n
boundaries in common with the parent QIAC are done first.

4. Recursively align the grids with the QIACs using the single QIAC algorithm applie
to the QIAC subdomain.

a. Define the selected QIAC as the next one in the order queue.
b. Define the subdomain that contains only the current QIAC.
c. Align the grid with the selected QIAC within the subdomain.
d. Smooth the grid for the selected QIAC within the subdomain.
e. If there are other QIACs to align, go to step a.

5. Apply the TTM smoothing to the entire grid.

When the boundaries of a QIAC are not straight lines, the position of the grid points
a curved boundary must be computed according to the shape of the edge.

When the grid is to be aligned with both SIACs and QIACs, we could first transfor
the line segments into the boundaries of QIACs and then use the multiple QIAC algorit
to align the grid. However, because the SIAC alignment algorithm is usually simpler,
more efficient, and can produce a better structured grid than the QIAC algorithm, it
advantageous to keep the SIACs and directly combine the two algorithms. We do this
first aligning the grid with the SIACs. Next, if there are QIACs that cross SIACs, the:
quadrilaterals are split so they do not cross an SIAC. We then apply the QIAC algoritl
while freezing the mesh points on the SIACs.

If the IACs are not quadrilaterals, they can usually be subdivided into quadrilaterals.
represent triangles as quadrilaterals by defining the center of the longest edge of the triz
to be a degenerate (180vertex of a quadrilateral with the same perimeter. The user ce
represent the IAC regions with more than four edges by dividing the region into quadril
erals and triangles. Because the splitting may introduce additional internal boundaries
are not IACs, we flag these artificially created internal boundaries so that the mesh pc
are not required to stay on these during the smoothing iterations. This is accomplishe
setting a flag for each vertex on the internal boundaries to indicates if the pointison an |
or not.

4. IAC GRID ALIGNMENT EXAMPLES

To demonstrate the strengths and weaknesses of the IAC grid alignment algorithm,
consider examples demonstrating the effectiveness of the algorithm for a problem v
multiply embedded regions, including circles and nested quadrilaterals. Next, we illustr
how the ordering and subdividing of QIACs can result in very different aligned grid
The examples all are initialized with a 4141 uniform grid, unless it is explicitly stated
otherwise.
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The computer software for these examples was developed by Shengtai Li and Pat
Knupp and is available through the Web site http://engineering.ucsb.edu/"shengtai. Tl
is also a graphics interface to display the grid during the refinement process and al
for interactive steering of the alignment process. The original IAC alignment code w
written in Fortran but lacked the flexibility to accommodate multiple shaped intern
boundaries without extensive changes for each special case. The current C++ soft
is far more flexible than the Fortran software in accommodating different-shaped bou
aries. The virtual function in the C++ allows boundaries of different shapes to be co
puted with the same routine as long as the boundaries are accessed through point
reference.

4.1. Multiple Embedded SIAC and QIAC Examples

Inthe first example, we illustrate the flexibility of the IAC algorithm by including embed
ded QIACs, QIACs with a shared edge, and an ellipse section. Note that the large QIA
shown in Fig. 6a contains two smaller ones (Il and IIl) and that QIAC IV shares an ed
with the large QIAC. Also, QIAC V is a circle that has been delineated by four circular ar
connecting the vertices. The numbering of the QIACs is also the order in which the |/
algorithm aligned the grid.

In all of the examples, the internal quadrilateral are defined by four vertices ordered i
counterclockwise direction. This same order is used to flag whether the mesh points or
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FIG. 6. (a) Six QIACs, including a circle, two QIACs with a shared boundary and two nested QIACS, a
defined in a square domain. (b) The IAC aligned grid for the QIACs shown in (a). (c) Three SIACs and two QIA
identify the interfaces to align the grid. The thin QIAC is approximately half the original grid spacing. (d) Tt
IAC aligned grid for (a) accurately tracks the interfaces and resolves the very thin QIAC.
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internal boundaries are IACs or were artificially created by the algorithm when it divide
the region into SIACs and QIACs.

The aligned grid in Fig. 6b illustrates the effectiveness of the algorithm on this compl
example. Note that the initial uniform reference grid points along the boundary are n
nonuniform to better accommodate the IACs. These mesh points were allowed to slide al
the boundaries when the grid was aligned with the internal QIAC. That is, the boundal
of the outside QIAC define a small domain for the inside QIAC. This holds also when \
align the grid with object IV. The inverse interpolation preserves the shape of the previ
QIACs, although the points on the QIAC boundary are redistributed. We also observed
during the alignment algorithm, when the grid was aligned with QIAC V and VI, the numb
of points on the boundary of QIAC | did not change. Although the default line is straig}
the boundaries of the objects and line segments can be defined by the user to be any s
This is done to define the ellipse as QIAC V.

In geophysical applications, it is common to have very thin layers that must be aligr
with the grid. Among the mixed SIACs and QIACs in Fig. 6¢ is a very thin QIAC layer. Thi
layer is below the thickness of our original reference grid, but the algorithm resolves
potential conflict in assigning a single reference grid point to multiple QIAC vertex point
The IAC grid shown in Fig. 6d. also illustrates how the circular arc in the SIAC resul
in a kink point being created where the straight line segments and circular arc meet.
kink point can be used by the user to indicate special points where a mesh point mus
placed. A list of the kink points defining their position must be supplied by the user befc
the initial grid generation. This was done to define the kink in the upper horizontal SIA(

4.2. Sensitivity of the Grid to the IAC Procedure

To investigate the sensitivity of the final aligned grid to the way in which the region
subdivided, we consider the QIAC shown in Fig. 7a. If we follow the procedures descrik
in Section 3.1, the resulting grid is almost a square grid embedded in the slanted recta
shown in Fig. 7b. Note that the density of grid points inside the QIAC is less than elsewh
in the domain.

We next divided the QIAC into two triangles and one slanted rectangle, as shown
Fig. 7c. We described the triangles as degenerate QIACs with a vertex in the middle of
long edge. We set the flag not to freeze the grid points along these long edges in the
grid smoothing step. That is, the grid points will stay aligned with the original QIAC, bt
not the internal ones. However, because the intermediate steps require more grid poir
align the grid with the triangle, more grid points are “trapped” inside the original QIAC
This results in far more internal grid points in the final aligned grid, Fig. 7d.

4.3. 1ACs in Nonrectangular Domains

Consider the three rectangular QIACs inside a shell domain shown in Fig. 8a. As descri
in Section 3, the current implementation of our algorithm requires that the left or the ric
QIAC must be aligned first. Note that the sequential nature of the algorithm broke
symmetry of the grid shown in Fig. 8b. Because we align the grid with the left QIAC befo
the right one, the grid is more regular on the left side of the domain. Other orderings of
QIACs will alter the symmetry. If a symmetric grid is desired for a symmetric problen
then the symmetry should be removed from the IAC process by solving, in this case,
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FIG. 7. (a) A diagonal QIAC is embedded in a square domain. (b) The IAC aligned grid inside the QIA
for (a) is coarser than elsewhere in the grid. (c) The original QIAC in (a) is split into two triangular QIACs ar
on diagonal QIAC in an attempt to confuse the IAC algorithm. (d) The internal boundaries for the new QIACs
(c) are not treated as IACs in the smoothing iteration. Note that the resulting mesh is much finer in the QIAC t
in (b).

half the domain and then reflecting the grid about the symmetry line to generate the
symmetric aligned grid.

Figures 8c and 8d illustrate the IAC grid for two line segments (a SIAC) and a squz
QIAC inside a quarter disk domain. As in the first example, the kink point in the SIAC mu
be explicitly accounted for when aligning the QIAC.

The “C” grid in Figs. 8e and 8f is defined to have a kink point at the tip of the triangle ¢
the domain boundary. This example also provided a good test for the effectiveness of
inverse interpolation routine to freeze the fixed point at the kink point in the middle of tf
boundary.

5. ELECTROMAGNETIC EXAMPLE ON AN ALIGNED GRID

To illustrate the effectiveness of the aligned grid, we solve an electromagnetic probl
that has been previously used to compare numerical methods for Maxwell’s equati
[16, 18]. We use the mimetic discretization of Maxwell’'s equations described in [11].

Consider the two-dimensional propagation of a plane electromagnetic wave acro:
cylindrical material interface [16, p. 297]. In this problem a finite amplitude wave prop:
gating within free space (with dielectric constagt= 8.85 x 1012 F/m? and permeability
o = 1.25666x 106 N/A?) is launched at the cylinder (= o/16, u = o). The wave
is transmitted through the cylinder, emerging at the opposite end after undergoing inte
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FIG.8. (a) Twodiamond-oriented QIACs are input symmetrically in a shell shaped domain. (b) The sequen
nature of the IAC grid algorithm does not preserve the symmetry of the QIACs in (a). To preserve the symme
the grid should be generated for half the domain and then reflected about the line of symmetry. (c) A QIA(
embedded in a disk shaped domain. (d) The IAC grid for the QIACs in (c) creates an almost perfect square
for the embedded rectangle. (e) The initial domain wraps around a triangular point and has an embedded C
(f) The IAC aligned “C” for (e) preserves the symmetry of the domain since there is only a single QIAC.

reflections within the cylindrical material. The computational domain of interest, shown
Fig. 9a, consists of a semi-circular section with radius 0.25 embedded within a larger r
angular region. The boundary of the cylinder is a material interface and we apply the |
algorithm to construct a logically rectangular grid aligned with the interface (Fig. 9b). T
left side of the IAC grid is almost rectangular and is appropriate to capture the plane w
propagating in from the left boundary. The electric field vectors at the time 4 ns (Fig. 9¢)
be compared with the finite element calculations on page 302 of Ref. [16]. The unstructt
grid used in Ref. [16, p. 298] also fits the interface, but is more distorted and non-unifor
Visual comparison of our results with those presented in [16] verifies that the electric vec
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FIG. 9. (a) A plane wave enters from the left boundary of a rectangular domain with an embedded cylinc
(b) The IAC grid is aligned with the external boundary. (c) The electric fietd-a#4 ns. is smooth and free from
distortions created by the grid.

field is smoother and freer from distortion due to the computational grid. An addition
benefit of this approach is that the numerical solution method on the logically rectangt
grid is less complex than the method on the unstructured grid.

6. DISCUSSION

We have described a new numerical algorithm that aligns an initial non-aligned quadril
eral grid with internal curves delineating internal interfaces in a computational domain. \
demonstrated the robustness and versatility of the IAC grid alignment for internal bout
aries in a series of numerical examples. We are investigating generalizing the IAC algorit
to three dimensions. Just as the problem of generating a 2D grid was reduced to the
generating a single-grid curve in the plane, so the problem of generating a 3D grid may
reduced to the problem of generating a surface in space.
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